
Vamos a um exemplo prático. Em sua época, o cientista alemão usava um experimento baseado em raios luminosos para medir a posição de um elétron em determinado instante. Mas para essa medição dar certo, é preciso lançar sobre o elétron uma pequena onda, que cause uma perturbação no seu estado natural. Essa perturbação altera o momento linear (o produto entre massa e velocidade da partícula) original do elétron.
Por isso, seria impossível medir, ao mesmo tempo, a posição e o momento linear do elétron, só se poderia medir um ou o outro.
Heisenberg acreditava que essa condição se aplicava apenas à mecânica quântica, mas os pesquisadores de Viena explicam que a incerteza também se observa em outros campos da física. Além disso, não se trata de um problema de medição: as partículas quânticas são incertas naturalmente. Em outras palavras, não daria mesmo para medir a posição e o momento linear de um elétron porque nem ele mesmo “sabe” onde está indo; não existe uma regularidade a ser mensurada.
Logo, os princípios precisam ser refeitos sobre essas duas variáveis: de um lado, a dificuldade de medição já identificada pelo princípio de Heisenberg. De outro, a “incerteza natural” de uma partícula quântica, que independe da dificuldade de medição. Para isso, usa-se as noções do “spin quântico”, que seria algo como as “coordenadas” de uma partícula quântica levando em conta sua natureza de movimento.
E foi isso que fizeram os pesquisadores de Viena: para fugir da medição clássica entre posição e momento linear, mediram o spin (giro) de um nêutron em dois experimentos consecutivos, e os números que foram aparecendo puderam dar uma visão mais abrangente do movimento da partícula. Dessa maneira, concluíram que existe de fato a incerteza no movimento das partículas quânticas. Mas isso não acontece porque as medições não podem dar conta, e sim pela própria natureza das partículas. [ScienceDaily]